Chapter 4: Frame Relay

Connecting Networks
Chapter 4

4.0 Introduction
4.1 Introduction to Frame Relay
4.2 Configuring Frame Relay
4.3 Troubleshooting Connectivity
4.4 Summary
Chapter 4: Objectives

- Describe the fundamental concepts of Frame Relay technology, including operation, implementation requirements, maps, and Local Management Interface (LMI) operation.

- Configure a basic Frame Relay permanent virtual circuit (PVC), including configuring and troubleshooting Frame Relay on a router serial interface and configuring a static Frame Relay map.

- Describe advanced concepts of Frame Relay technology, including subinterfaces, bandwidth, and flow control.

- Configure an advanced Frame Relay PVC, including solving reachability issues, configuring subinterfaces, and verifying and troubleshooting a Frame Relay configuration.
4.1 Introduction to Frame Relay
Benefits of Frame Relay
Introducing Frame Relay

Frame Relay allows communications between all sites using a single access circuit to the provider.
Benefits of Frame Relay

Benefits of Frame Relay WAN Technology
Benefits of Frame Relay

Dedicated Line Requirements
Benefits of Frame Relay

Frame Relay Cost Effectiveness and Flexibility

- With dedicated lines, customers pay for an end-to-end connection, which includes the local loop and the network link. With Frame Relay, customers only pay for the local loop, and for the bandwidth, they purchase from the network provider.

- Frame Relay shares bandwidth across a larger base of customers. Typically, a network provider can service 40 or more 56 kb/s customers over one T1 circuit. Using dedicated lines would require more CSU/DSUs (one for each line) and more complicated routing and switching.
Frame Relay Operation

Virtual Circuits

- **Switched virtual circuits (SVC)** – Established dynamically by sending signaling messages to the network.

- **Permanent virtual circuits (PVCs)** – Preconfigured by the carrier, and after they are set up, only operate in DATA TRANSFER and IDLE modes.

- VCs are identified by DLCIs. Frame Relay DLCIs have local significance, which means that the values are not unique in the Frame Relay WAN. A DLCI identifies a VC to the equipment at an endpoint.

- A DLCI has no significance beyond the single link.
Frame Relay Operation

Multiple Virtual Circuits

Multiple VCs on the same access link are distinguishable by the DLCI.
Frame Relay Operation

Frame Relay Encapsulation

<table>
<thead>
<tr>
<th>8 bits</th>
<th>16 bits</th>
<th>Variable</th>
<th>16 bits</th>
<th>8 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flag</td>
<td>Address</td>
<td>Data</td>
<td>FCS</td>
<td>Flag</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DLCI</th>
<th>C/R</th>
<th>EA</th>
<th>DLCI</th>
<th>FECN</th>
<th>BECN</th>
<th>DE</th>
<th>EA</th>
</tr>
</thead>
</table>

Byte 1 Byte 2
Frame Relay Operation

Frame Relay Topologies

Frame Relay Star - hub with one physical link carrying 5 VCs

Mesh Topology - Each DTE has one physical link carrying 4 VCs
Frame Relay Operation

Frame Relay Address Mapping

R1(config)# interface serial 0/0/1
R1(config-if)# ip address 10.1.1.1 255.255.255.0
R1(config-if)# encapsulation frame-relay
R1(config-if)# no frame-relay inverse-arp
R1(config-if)# frame-relay map ip 10.1.1.2 102 broadcast
cisco
R1(config-if)# no shutdown
R1(config-if)#
*Mar 31 18:57:38.994: %LINK-3-UPDOWN: Interface Serial0/0/1, changed state to up
R1(config-if)#

R1# show frame-relay map
Serial0/0/1 (up): ip 10.1.1.2 dlcI 102(0x66,0x1860), static, broadcast,
 CISCO, status defined, active
R1#
Frame Relay Operation

Local Management Interface (LMI)

R1# show frame-relay lmi

LMI Statistics for interface Serial0/0/1 (Frame Relay DTE)
LMI TYPE = CISCO

Invalid Unnumbered info 0 Invalid Prot Disc 0
Invalid dummy Call Ref 0 Invalid Msg Type 0
Invalid Status Message 0 Invalid Lock Shift 0
Invalid Information ID 0 Invalid Report IE Len 0
Invalid Report Request 0 Invalid Keep IE Len 0
Num Status Enq. Sent 368 Num Status msgs Rcvd 369
Num Update Status Rcvd 0 Num Status Timeouts 0
Last Full Status Req 00:00:29 Last Full Status Rcvd 00:00:29
R1#
Frame Relay Operation

LMI Extensions

- VC status messages
- Multicasting
- Global addressing
- Simple flow control

<table>
<thead>
<tr>
<th>VC Identifiers</th>
<th>VC Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LMI (ANSI, ITU)</td>
</tr>
<tr>
<td>1..15</td>
<td>Reserved for future use</td>
</tr>
<tr>
<td>992..1007</td>
<td>CLLM</td>
</tr>
<tr>
<td>1008..1022</td>
<td>Reserved for future use (ANSI, ITU)</td>
</tr>
<tr>
<td>1019..1020</td>
<td>Multicasting (Cisco)</td>
</tr>
<tr>
<td>1023</td>
<td>LMI (Cisco)</td>
</tr>
</tbody>
</table>
Frame Relay Operation

Using LMI and Inverse ARP to Map Addresses

1. The Inverse ARP request includes the source hardware, source Layer 3 protocol address, and the known target hardware address.

2. The Inverse ARP request fills the target Layer 3 protocol address field with all zeroes. It encapsulates the packet for the specific network and sends it directly to the destination device using the VC.

3. Upon receiving an Inverse ARP request, the destination device uses the source device’s address to create its own DLCI-to-Layer 3 map.

4. It then sends an Inverse ARP response that includes its Layer 3 address information.

5. When the source device receives the Inverse ARP response, it completes the DLCI-to-Layer 3 map using the provided information.
Advanced Frame Relay Concepts

Access Rate and Committed Information Rate

<table>
<thead>
<tr>
<th>Term</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Rate</td>
<td>The capacity of the local loop.</td>
</tr>
<tr>
<td>Committed Information Rate (CIR)</td>
<td>The capacity through the local loop guaranteed by the provider.</td>
</tr>
</tbody>
</table>
Advanced Frame Relay Concepts

Frame Relay Example

Frame Relay Charges – Example

<table>
<thead>
<tr>
<th>Three chargable components for R1:</th>
<th>CIR for each PVC:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Loop</td>
<td>PVC DLCI</td>
</tr>
<tr>
<td>64 kb/s</td>
<td>32 kb/s</td>
</tr>
<tr>
<td>Two Ports</td>
<td>DLCI 102</td>
</tr>
<tr>
<td>DLCI 102</td>
<td>16 kb/s</td>
</tr>
<tr>
<td>DLCI 103</td>
<td>Total CIR</td>
</tr>
<tr>
<td>48 kb/s</td>
<td>48 kb/s</td>
</tr>
</tbody>
</table>
Advanced Frame Relay Concepts

Bursting

Frames have DE bit set

Transmission

R1

0 kb/s

64 kb/s

48 kb/s

32 kb/s

Be (16 kb/s)

Bc (16 kb/s)

CIR (32 kb/s)
Advanced Frame Relay Concepts

Frame Relay Flow Control

- When the DCE sets the BECN bit to 1, it notifies devices in the direction of the source (upstream) that there is congestion on the network.

- When the DCE sets the FECN bit to 1, it notifies devices in the direction of the destination (downstream) that there is congestion on the network.

- DTE devices can set the value of the DE bit to 1 to indicate that the frame has lower importance than other frames. When the network becomes congested, DCE devices discard the frames with the DE bit set to 1 before discarding those that do not.
4.2 Configuring Frame Relay
Configure Basic Frame Relay

Basic Frame Relay Configuration Steps

<table>
<thead>
<tr>
<th>Required Tasks</th>
<th>Optional Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Frame Relay encapsulation on an interface.</td>
<td>Configure the LMI.</td>
</tr>
<tr>
<td>Configure dynamic or static address mapping.</td>
<td>Configure Frame Relay SVCs.</td>
</tr>
<tr>
<td></td>
<td>Configure Frame Relay traffic shaping.</td>
</tr>
<tr>
<td></td>
<td>Customize Frame Relay for your network.</td>
</tr>
<tr>
<td></td>
<td>Monitor and maintain Frame Relay connections.</td>
</tr>
</tbody>
</table>
Configure Basic Frame Relay

Configuring a Static Frame Relay Map

```plaintext
frame-relay map protocol protocol-address dlcI [broadcast]
```

<table>
<thead>
<tr>
<th>Command Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>protocol</code></td>
<td>Defines the supported protocol, bridging, or logical link control: ip (IPv4), ipv6, appletalk, decnet, dlsw, ipx, llc2, rsrb, vines and xns.</td>
</tr>
<tr>
<td><code>protocol-address</code></td>
<td>Defines the network layer address of the destination router interface.</td>
</tr>
<tr>
<td><code>dlci</code></td>
<td>Defines the local DLCI used to connect to the remote protocol address.</td>
</tr>
<tr>
<td><code>broadcast</code></td>
<td>(Optional) Allows broadcasts and multicasts over the virtual circuit. This permits the use of dynamic routing protocols over the VC.</td>
</tr>
</tbody>
</table>
Configure Basic Frame Relay

Verifying a Static Frame Relay Map

R1# show frame-relay map
Serial0/0/1 (up): ipv6 2001:DB8:CAFE:1::2 dlcI 102(0x66,0x1860),
static, CISCO, status defined, active
Serial0/0/1 (up): ipv6 FE80::2 dlcI 102(0x66,0x1860), static,
broadcast, CISCO, status defined, active
Serial0/0/1 (up): ip 10.1.1.2 dlcI 102(0x66,0x1860), static,
broadcast, CISCO, status defined, active
R1#

R2# show frame-relay map
Serial0/0/1 (up): ipv6 2001:DB8:CAFE:1::1 dlcI 201(0xC9,0x3090),
static, CISCO, status defined, active
Serial0/0/1 (up): ipv6 FE80::1 dlcI 201(0xC9,0x3090), static,
broadcast, CISCO, status defined, active
Serial0/0/1 (up): ip 10.1.1.1 dlcI 201(0xC9,0x3090), static,
broadcast, CISCO, status defined, active
R2#
Configure Subinterfaces

Reachability Issues

Frame Relay networks provide NBMA connectivity, using a hub-and-spoke topology, between remote sites. In an NBMA Frame Relay topology, when a single multipoint interface must be used to interconnect multiple sites, routing update reachability issues may result.

Reachability Issues:

- Split horizon
- Broadcast/multicast replication
- Neighbor Discovery: DR and BDR
Configure Subinterfaces

Solving Reachability Issues

- **Disable split horizon** – One method for solving the reachability issues that are produced by split horizon may be to turn off split horizon; however, disabling split horizon increases the chances of routing loops in your network.

- **Full-meshed topology** – Another method is to use a full-meshed topology; however, this topology increases costs.

- **Subinterfaces** – In a hub-and-spoke Frame Relay topology, the hub router can be configured with logically assigned interfaces called subinterfaces.
Configure Subinterfaces

Configuring Point-to-Point Subinterfaces

Configure Subinterfaces

Configuring Point-to-Point Subinterfaces

```bash
router(config-if)# interface serial number.subinterface-number
[multipoint | point-to-point]
```

Assigning a DLCI

```bash
router(config-subif)# frame-relay interface-dlci dlci-number
```
Configure Subinterfaces

Example: Configuring Point-to-Point Subinterfaces

```
R1(config)# interface serial 0/0/1
R1(config-if)# encapsulation frame-relay
R1(config-if)# no shutdown
R1(config-if)# exit
R1(config)# interface serial 0/0/1.102 point-to-point
R1(config-subif)# ip address 10.1.1.1 255.255.255.252
R1(config-subif)# bandwidth 64
R1(config-subif)# frame-relay interface-dlci 102
R1(config-fr-dlci)# exit
R1(config-subif)# exit
R1(config)# interface serial 0/0/1.103 point-to-point
R1(config-subif)# ip address 10.1.1.5 255.255.255.252
R1(config-subif)# bandwidth 64
R1(config-subif)# frame-relay interface-dlci 103
R1(config-fr-dlci)#
```
4.3 Troubleshooting Connectivity
Troubleshoot Frame Relay
Verifying Frame Relay Operation: Frame Relay Interface

R1# show interfaces serial 0/0/1
Serial0/0/1 is up, line protocol is up
 Hardware is GT96K Serial
 MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation FRAME-RELAY, loopback not set
 Keepalive set (10 sec)
 CRC checking enabled
 LMI enq sent 443, LMI stat recvd 444, LMI upd recvd 0,
 DTE LMI up
 LMI enq recvd 0, LMI stat sent 0, LMI upd sent 0
 LMI DLCI 1023 LMI type is CISCO frame relay DTE
 FR SVC disabled, LAPF state down
 Broadcast queue 0/64, broadcasts sent/dropped 1723/0,
 interface broadcasts 1582
 Last input 00:00:01, output 00:00:01, output hang never

<output omitted>
Troubleshoot Frame Relay

Verifying Frame Relay Operation: LMI Operations

R1# show frame-relay lmi

LMI Statistics for interface Serial0/0/1

<table>
<thead>
<tr>
<th>Invalid Unnumbered info 0</th>
<th>Invalid Prot Disc 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid dummy Call Ref 0</td>
<td>Invalid Msg Type 0</td>
</tr>
<tr>
<td>Invalid Status Message 0</td>
<td>Invalid Lock Shift 0</td>
</tr>
<tr>
<td>Invalid Information ID 0</td>
<td>Invalid Report IE Len 0</td>
</tr>
<tr>
<td>Invalid Report Request 0</td>
<td>Invalid Keep IE Len 0</td>
</tr>
<tr>
<td>Num Status Enq. Sent 578</td>
<td>Num Status msgs Rcvd 579</td>
</tr>
<tr>
<td>Num Update Status Rcvd 0</td>
<td>Num Status Timeouts 0</td>
</tr>
<tr>
<td>Last Full Status Req 00:00:28</td>
<td>Last Full Status Rcvd 00:00:28</td>
</tr>
</tbody>
</table>

R1#
Troubleshoot Frame Relay
Verifying Frame Relay Operation: PVC Status

R1# show frame-relay pvc 102

PVC Statistics for interface Serial0/0/1 (Frame Relay DTE)

DLCI = 102, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE,
INTERFACE = Serial0/0/1.102

input pkts 1230 output pkts 1243 in bytes 103826
out bytes 105929 dropped pkts 0 in pkts dropped 0
out pkts dropped 0 out bytes dropped 0
in FECN pkts 0 in BECN pkts 0 out FECN pkts 0
out BECN pkts 0 in DE pkts 0 out DE pkts 0
out bcast pkts 1228 out bcast bytes 104952
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
pvc create time 01:38:29, last time pvc status changed 01:26:19
R1#
Troubleshoot Frame Relay

Verifying Frame Relay Operation: Inverse ARP

R1# clear frame-relay inarp
R1# show frame-relay map
Serial0/0/1.102 (up): point-to-point dlc, dlc 102 (0x66, 0x1860),
broadcast status defined, active
Serial0/0/1.103 (up): point-to-point dlc, dlc 103 (0x67, 0x1870),
broadcast status defined, active
R1#

R2# clear frame-relay inarp
R2# show frame-relay map
Serial0/0/1.201 (up): point-to-point dlc, dlc 201 (0xC9, 0x3090),
broadcast status defined, active
Serial0/0/1.203 (up): point-to-point dlc, dlc 203 (0xCB, 0x30B0),
broadcast status defined, active
R2#

R3# show frame-relay map
Serial0/0/0 (up): ip 10.1.1.9 dlc 302 (0x12E, 0x48E0), dynamic, broadcast, CISCO, status defined, active
R3#
Troubleshoot Frame Relay

Troubleshooting Frame Relay Operation

R1# debug frame lmi
Frame Relay LMI debugging is on
Displaying all Frame Relay LMI data
R1#
*Apr 1 14:57:43.559: Serial0/0/1(in): Status, myseq 22, pak size 29
*Apr 1 14:57:43.559: RT IE 1, length 1, type 0
*Apr 1 14:57:43.559: KA IE 3, length 2, yourseq 22, myseq 22
*Apr 1 14:57:43.559: PVC IE 0x7, length 0x6, dlc1 102, status 0x2, bw 0
*Apr 1 14:57:43.559: PVC IE 0x7, length 0x6, dlc1 103, status 0x2, bw 0
R1#
*Apr 1 14:57:53.555: Serial0/0/1(out): StEnq, myseq 23, yourseen 22, DTE up
*Apr 1 14:57:53.555: datagramstart = 0xED802AF4, datagramsize = 13
*Apr 1 14:57:53.555: FR encap = 0xF0C10309
*Apr 1 14:57:53.555: 00 75 01 01 01 03 02 17 16
*Apr 1 14:57:53.555:
*Apr 1 14:57:53.559: Serial0/0/1(in): Status, myseq 23, pak size 13
*Apr 1 14:57:53.559: RT IE 1, length 1, type 1
*Apr 1 14:57:53.559: KA IE 3, length 2, yourseq 23, myseq 23
R1# un all
All possible debugging has been turned off
Chapter 4: Summary

This chapter described:

- The fundamental concepts of Frame Relay technology, including operation, implementation requirements, maps, and Local Management Interface (LMI) operation.

- How to configure a basic Frame Relay permanent virtual circuit (PVC), including configuring and troubleshooting Frame Relay on a router serial interface and configuring a static Frame Relay map.

- Advanced concepts of Frame Relay technology including subinterfaces, bandwidth and flow control.

- Advanced Frame Relay PVCs, including solving reachability issues, configuring subinterfaces, and verifying and troubleshooting a Frame Relay configuration.