Chapter 1: Introduction to Scaling Networks

Scaling Networks
Chapter 1

1.0 Introduction

1.1 Implementing a Network Design

1.2 Selecting Network Devices

1.3 Summary
Chapter 1: Objectives

- Describe the use of a hierarchical network for a small business.
- Describe recommendations for designing a network that is scalable.
- Describe the type of switches available for small-to-medium-sized business networks.
- Describe the type of routers available for small-to-medium-sized business networks.
- Configure and verify basic settings on a Cisco IOS device.
1.1 Implementing a Network Design

Scaling Networks
Hierarchical Network Design

Network Scaling Needs

As they grow and expand, all enterprise networks must:

- Support critical applications
- Support converged network traffic
- Support diverse business needs
- Provide centralized administrative control
Hierarchical Network Design

Enterprise Business Devices

To provide a high-reliability network, enterprise class equipment is installed in the enterprise network.
Hierarchical Network Design

This model divides the network functionality into three distinct layers.
Hierarchical Network Design

Cisco Enterprise Architecture

The primary Cisco Enterprise Architecture modules include:

- Enterprise Campus
- Enterprise Edge
- Service Provider Edge
- Remote
Hierarchical Network Design

Failure Domains

- Failure Domains are areas of a network that are impacted when a critical device or network service experiences problems.

- Redundant links and enterprise class equipment minimize disruption of network.

- Smaller failure domains reduce the impact of a failure on company productivity.

- Smaller failure domains also simplify troubleshooting.

- Switch block deployment – each switch block acts independently of the others. Failure of a single device does not impact the whole network.
Designing for Scalability

- Use expandable, modular equipment or clustered devices.
- Include design modules that can be added, upgraded, and modified, without affecting the design of the other functional areas of the network.
- Create a hierarchical addressing scheme.
- Use routers or multilayer switches to limit broadcasts and filter traffic.
Expanding the Network
Planning for Redundancy

- Installing duplicate equipment
- Providing redundant paths
Expanding the Network

Increasing Bandwidth

- Link aggregation increases the amount of bandwidth between devices by creating one logical link made up of several physical links.

- EtherChannel is a form of link aggregation used in switched networks.
Expanding the Network

Expanding the Access Layer

Access layer connectivity can be extended through wireless connectivity.
Expanding the Network

Fine-Tuning Routing Protocols

OSPF works well for large, hierarchical networks.
1.2 Selecting Network Devices

Scaling Networks
Switch Hardware

Switch Platforms

Select form factor:

- Fixed
- Modular
- Stackable
- Non-stackable
Switch Hardware

Port Density

24-port switch

48-port switch

Modular switch with up to 1000+ ports
Switch Hardware

Forwarding Rates

The processing capabilities of a switch are rated by how much data the switch can process per second.
Switch Hardware

Power over Ethernet

Power Over Ethernet

IP Phone receives power through the Ethernet cable.

Wireless Access Point receives power through the Ethernet cable.

PoE Pass-Through

Cisco Catalyst 3750-X

PoE+links

Cisco Catalyst PoE Pass-Through Switch

PoE Down Links

IP Phone

Wireless Access Point

Laptop
Switch Hardware
Multilayer Switching

- Deployed in the core and distribution layers of an organization’s switched network.
- Can build a routing table, support a few routing protocols, and forward IP packets.

Cisco Catalyst 2960 Series Switches
Router Hardware

Router Requirements

Role of routers:

- Interconnect multiple sites
- Provide redundant paths
- Connect ISPs
- Translate between media types and protocols
Router Hardware
Cisco Routers

Three categories of routers:

- **Branch** – Highly available 24/7.

- **Network Edge** – High performance, high security, and reliable services. Connect campus, data center, and branch networks.

- **Service provider routers**
Router Hardware

- Fixed configuration – Built-in interfaces.
- Modular – Slots allow different interfaces to be added.
Managing Devices
Managing IOS Files and Licensing
Managing Devices

In-Band vs. Out-of-Band Management

- **In-Band** requires, at least, one interface to be connected and operational and use of Telnet, SSH, or HTTP to access device.

- **Out-of-Band** requires direct connection to console or AUX port and Terminal Emulation client to access device.
Managing Devices

Basic Router CLI commands

Basic router configuration includes:

- Hostname
- Passwords (console, Telnet/SSH, and privileged mode)
- Interface IP addresses
- Enabling a routing protocol
Managing Devices

Basic Router show Commands

- **show ip protocols** – Displays information about routing protocol configured.
- **show ip route** – Displays routing table information.
- **show ip ospf neighbor** – Displays information about OSPF neighbors.
- **show ip interfaces** – Displays detailed information about interfaces.
- **show ip interface brief** – Displays all interfaces with IP addressing, interface, and line protocol status.
- **show cdp neighbors** – Displays information about all directly connected Cisco devices.
Managing Devices

Basic Switch CLI Commands

- Hostname
- Passwords
- In-Band access requires the Switch to have an IP address (assigned to VLAN 1).
- Save configuration – `copy running-config startup-config` command.
- To clear switch – `erase startup-config`, and then `reload`.
- To erase VLAN information – `delete flash:vlan.dat`.
Managing Devices

Basic Switch Show Commands

- `show port-security` – Displays any ports with security enabled.
- `show port-security address` – Displays all secure MAC addresses.
- `show interfaces` – Displays detailed information about interfaces.
- `show mac-address-table` – Displays all MAC addresses the switch has learned.
- `show cdp neighbors` – Displays all directly connected Cisco devices.
1.3 Summary

Scaling Networks
Chapter 1: Summary

This chapter:

- Introduces the hierarchical network design model that divides network functionality into the access layer, the distribution layer, and the core layer.
- Describes how the Cisco Enterprise Architecture further divides the network into functional components called modules.
- Defines how routers and multilayer switches are used to limit failure domains.
- Explains that a good network design includes a scalable IP scheme, fast converging and scalable routing protocols, appropriate Layer 2 protocols and devices that are modular or easily upgraded.
Chapter 1: Summary (cont.)

- Identifies that a mission-critical server should have a connection to two different access layer switches. It should also have redundant modules and backup power.

- Recognizes that routers and switches should be selected from the appropriate categories to meet the network’s requirements.