Chapter 8: IP Addressing

Introduction to Networks
Chapter 8

8.0 Introduction
8.1 IPv4 Network Addresses
8.2 IPv6 Network Addresses
8.3 Connectivity Verification
8.4 Summary
Chapter 8: Objectives

Upon completion of this chapter, you will be able to:

- Describe the structure of an IPv4 address.
- Describe the purpose of the subnet mask.
- Compare the characteristics and uses of the unicast, broadcast, and multicast IPv4 addresses.
- Compare the use of public address space and private address space.
- Explain the need for IPv6 addressing.
- Describe the representation of an IPv6 address.
- Describe types of IPv6 network addresses.
- Configure global unicast addresses.
- Describe multicast addresses.
- Describe the role of ICMP in an IP network. (Include IPv4 and IPv6.)
- Use ping and traceroute utilities to test network connectivity.
8.1 IPv4 Network Addresses
IPv4 Address Structure

Binary Notation

- Binary notation refers to the fact that computers communicate in 1s and 0s
- Positional notation - converting binary to decimal requires an understanding of the mathematical basis of a numbering system
IPv4 Address Structure

Binary Number System

DOTTED DECIMAL ADDRESS

32-BIT ADDRESS

Radix
Exponent
Octet Bit Values
Binary Address
Binary Bit Values

Add the binary bit values. 128 + 64 = 192
IPv4 Address Structure

Converting a Binary Address to Decimal

Practice

<table>
<thead>
<tr>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
IPv4 Address Structure

Converting a Binary Address to Decimal

Practice

Answer = 176

Answer = 255
IPv4 Address Structure

Converting a Binary Address to Decimal

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 64</td>
<td>32 16</td>
<td>8 4 2 1</td>
<td>128 64</td>
</tr>
<tr>
<td>128 64</td>
<td>32 16</td>
<td>8 4 2 1</td>
<td>128 64</td>
</tr>
<tr>
<td>128 64</td>
<td>32 16</td>
<td>8 4 2 1</td>
<td>128 64</td>
</tr>
<tr>
<td>128 64</td>
<td>32 16</td>
<td>8 4 2 1</td>
<td>128 64</td>
</tr>
</tbody>
</table>

- **Binary Address**: 11000000 10101000 00000101 00000101
- **Binary Bit Values**: 128 64 0 0 0 0 0 0 128 32 0 8 0 0 0 0 0 0 0 8 0 2 0 0 0 0 8 0 2 0

128 + 64 = 192
128 + 32 + 8 = 168
8 + 2 = 10
8 + 2 = 10

Dotted Decimal Address: 192.168.10.10
IPv4 Address Structure

Converting from Decimal to Binary

168 = \, ? \text{ binary}
IPv4 Address Structure

Converting from Decimal to Binary (Cont.)

Convert Decimal to Binary

192.168.10.10

192
11000000

168
10101000

10
00001010

10
00001010

11000000
10101000
00001010
00001010

Binary IPv4 Address
IPv4 Subnet Mask

Network Portion and Host Portion of an IPv4 Address

- To define the network and host portions of an address, a device uses a separate 32-bit pattern called a subnet mask.

- The subnet mask does not actually contain the network or host portion of an IPv4 address, it just says where to look for these portions in a given IPv4 address.
IPv4 Subnet Mask
Network Portion and Host Portion of an IPv4 Address (cont.)

Valid Subnet Masks

<table>
<thead>
<tr>
<th>Subnet Value</th>
<th>128</th>
<th>64</th>
<th>32</th>
<th>16</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>254</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>252</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>248</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>240</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>224</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
IPv4 Subnet Mask

Examining the Prefix Length

<table>
<thead>
<tr>
<th>Network Address</th>
<th>Dotted Decimal</th>
<th>Significant bits shown in binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.0/24</td>
<td></td>
<td>10.1.1.00000000</td>
</tr>
<tr>
<td>First Host Address</td>
<td>10.1.1.1</td>
<td>10.1.1.00000001</td>
</tr>
<tr>
<td>Last Host Address</td>
<td>10.1.1.254</td>
<td>10.1.1.11111110</td>
</tr>
<tr>
<td>Broadcast Address</td>
<td>10.1.1.255</td>
<td>10.1.1.11111111</td>
</tr>
<tr>
<td>Number of hosts:</td>
<td></td>
<td>2^8 – 2 = 254 hosts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network Address</th>
<th>Dotted Decimal</th>
<th>Significant bits shown in binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.0/25</td>
<td></td>
<td>10.1.1.00000000</td>
</tr>
<tr>
<td>First Host Address</td>
<td>10.1.1.1</td>
<td>10.1.1.00000001</td>
</tr>
<tr>
<td>Last Host Address</td>
<td>10.1.1.126</td>
<td>10.1.1.01111110</td>
</tr>
<tr>
<td>Broadcast Address</td>
<td>10.1.1.127</td>
<td>10.1.1.01111111</td>
</tr>
<tr>
<td>Number of hosts:</td>
<td></td>
<td>2^7 – 2 = 126 hosts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network Address</th>
<th>Dotted Decimal</th>
<th>Significant bits shown in binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.0/26</td>
<td></td>
<td>10.1.1.00000000</td>
</tr>
<tr>
<td>First Host Address</td>
<td>10.1.1.1</td>
<td>10.1.1.00000001</td>
</tr>
<tr>
<td>Last Host Address</td>
<td>10.1.1.162</td>
<td>10.1.1.00111110</td>
</tr>
<tr>
<td>Broadcast Address</td>
<td>10.1.1.163</td>
<td>10.1.1.00111111</td>
</tr>
<tr>
<td>Number of hosts:</td>
<td></td>
<td>2^6 – 2 = 62 hosts</td>
</tr>
</tbody>
</table>
IPv4 Subnet Mask

Examining the Prefix Length (cont.)

The table below illustrates the relationship between the prefix length and the number of hosts in an IP address.

<table>
<thead>
<tr>
<th>Network Address</th>
<th>Dotted Decimal</th>
<th>Significant bits shown in binary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.1.1.0/27</td>
<td>10.1.1.00000000</td>
</tr>
<tr>
<td>First Host Address</td>
<td>10.1.1.1</td>
<td>10.1.1.00000001</td>
</tr>
<tr>
<td>Last Host Address</td>
<td>10.1.1.30</td>
<td>10.1.1.00011110</td>
</tr>
<tr>
<td>Broadcast Address</td>
<td>10.1.1.31</td>
<td>10.1.1.00011111</td>
</tr>
<tr>
<td>Number of hosts:</td>
<td>2^5 – 2 = 30 hosts</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network Address</th>
<th>10.1.1.0/28</th>
<th>10.1.1.00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Host Address</td>
<td>10.1.1.1</td>
<td>10.1.1.00000001</td>
</tr>
<tr>
<td>Last Host Address</td>
<td>10.1.1.14</td>
<td>10.1.1.00001110</td>
</tr>
<tr>
<td>Broadcast Address</td>
<td>10.1.1.15</td>
<td>10.1.1.00001111</td>
</tr>
<tr>
<td>Number of hosts:</td>
<td>2^4 – 2 = 14 hosts</td>
<td></td>
</tr>
</tbody>
</table>
IPv4 Subnet Mask

IPv4 Network, Host, and Broadcast Address

10.1.1.0/24

<table>
<thead>
<tr>
<th>Network Portion</th>
<th>Host Portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 0001010</td>
<td>1 0000001</td>
</tr>
<tr>
<td></td>
<td>1 0000001</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0001010</td>
<td>1 0000001</td>
</tr>
<tr>
<td></td>
<td>1 0000001</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0001010</td>
<td>1 0000001</td>
</tr>
<tr>
<td></td>
<td>1 0000001</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IPv4 Subnet Mask

First Host and Last Host Addresses

10.1.1.0/24

<table>
<thead>
<tr>
<th>Network Portion</th>
<th>Host Portion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 00001010</td>
<td>1 00000001</td>
<td>1 00000001</td>
</tr>
<tr>
<td>10 00001010</td>
<td>1 00000001</td>
<td>1 00000001</td>
</tr>
</tbody>
</table>
IPv4 Subnet Mask

Bitwise AND Operation

1 AND 1 = 1 1 AND 0 = 0 0 AND 1 = 0 0 AND 0 = 0
IPv4 Unicast, Broadcast, and Multicast

Assigning a Static IPv4 Address to a Host

LAN Interface Properties

Configuring a Static IPv4 Address
DHCP – The preferred method of assigning IPv4 addresses to hosts on large networks because it reduces the burden on network support staff and virtually eliminates entry errors.
IPv4 Unicast, Broadcast, and Multicast

Unicast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: **Unicast**, Broadcast, and Multicast

#1 Unicast – the process of sending a packet from one host to an individual host.
IPv4 Unicast, Broadcast, and Multicast

Broadcast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: Unicast, **Broadcast**, and Multicast.

#2 **Broadcast** – the process of sending a packet from one host to all hosts in the network.

NOTE: Routers do not forward a limited broadcast!

Directed broadcast
- Destination 172.16.4.255
- Hosts within the 172.16.4.0/24 network
IPv4 Unicast, Broadcast, and Multicast

Multicast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: Unicast, Broadcast, and **Multicast**.

#3 Multicast – The process of sending a packet from one host to a selected group of hosts, possibly in different networks.

- Reduces traffic
- Reserved for addressing multicast groups – 224.0.0.0 to 239.255.255.255.
- Link local – 224.0.0.0 to 224.0.0.255 (Example: routing information exchanged by routing protocols)
- Globally scoped addresses – 224.0.1.0 to 238.255.255.255 (Example: 224.0.1.1 has been reserved for Network Time Protocol)
Types of IPv4 Address

Public and Private IPv4 Addresses

Private address blocks are:

- Hosts that do not require access to the Internet can use private addresses
 - 10.0.0.0 to 10.255.255.255 (10.0.0.0/8)
 - 172.16.0.0 to 172.31.255.255 (172.16.0.0/12)
 - 192.168.0.0 to 192.168.255.255 (192.168.0.0/16)

Shared address space addresses:

- Not globally routable
- Intended only for use in service provider networks
- Address block is 100.64.0.0/10
Types of IPv4 Address

Special Use IPv4 Addresses

- **Network and Broadcast addresses** – within each network the first and last addresses cannot be assigned to hosts

- **Loopback address** – 127.0.0.1 a special address that hosts use to direct traffic to themselves (addresses 127.0.0.0 to 127.255.255.255 are reserved)

- **Link-Local address** – 169.254.0.0 to 169.254.255.255 (169.254.0.0/16) addresses can be automatically assigned to the local host

- **TEST-NET addresses** – 192.0.2.0 to 192.0.2.255 (192.0.2.0/24) set aside for teaching and learning purposes, used in documentation and network examples

- **Experimental addresses** – 240.0.0.0 to 255.255.255.254 are listed as reserved
Types of IPv4 Address

Legacy Classful Addressing

<table>
<thead>
<tr>
<th>Address Class</th>
<th>1st octet range (decimal)</th>
<th>1st octet bits (green bits do not change)</th>
<th>Network(N) and Host(H) parts of address</th>
<th>Default subnet mask (decimal and binary)</th>
<th>Number of possible networks and hosts per network</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1-127**</td>
<td>00000000-01111111</td>
<td>N.H.H.H</td>
<td>255.0.0.0</td>
<td>128 nets (2^7) 16,777,214 hosts per net (2^24-2)</td>
</tr>
<tr>
<td>B</td>
<td>128-191</td>
<td>10000000-10111111</td>
<td>N.N.H.H</td>
<td>255.255.0.0</td>
<td>16,384 nets (2^14) 65,534 hosts per net (2^16-2)</td>
</tr>
<tr>
<td>C</td>
<td>192-223</td>
<td>11000000-11011111</td>
<td>N.N.N.H</td>
<td>255.255.255.0</td>
<td>2,097,150 nets (2^21) 254 hosts per net (2^8-2)</td>
</tr>
<tr>
<td>D</td>
<td>224-239</td>
<td>11100000-11101111</td>
<td>NA (multicast)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>240-255</td>
<td>11110000-11111111</td>
<td>NA (experimental)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types of IPv4 Address

Legacy Classful Addressing (cont.)

Classless Addressing

- Formal name is Classless Inter-Domain Routing (CIDR, pronounced “cider"
- Created a new set of standards that allowed service providers to allocate IPv4 addresses on any address bit boundary (prefix length) instead of only by a class A, B, or C address
Types of IPv4 Address

Assignment of IP Addresses

Regional Internet Registries (RIRs)
Types of IPv4 Address

Assignment of IP Addresses (Cont.)

ISP are large national or international ISPs that are directly connected to the Internet backbone.

Tier 2 ISPs generally focus on business customers.

Tier 3 ISPs often bundle Internet connectivity as a part of network and computer service contracts for their customers.

Tier 3 ISPs purchase their Internet service from Tier 2 ISPs.
8.2 IPv6 Network Addresses
IPv4 Issues

The Need for IPv6

- IPv6 is designed to be the successor to IPv4.
- Depletion of IPv4 address space has been the motivating factor for moving to IPv6.
- Projections show that all five RIRs will run out of IPv4 addresses between 2015 and 2020.
- With an increasing Internet population, a limited IPv4 address space, issues with NAT and an Internet of things, the time has come to begin the transition to IPv6!
- IPv4 has a theoretical maximum of 4.3 billion addresses, plus private addresses in combination with NAT.
- IPv6 larger 128-bit address space provides for 340 undecillion addresses.
- IPv6 fixes the limitations of IPv4 and includes additional enhancements, such as ICMPv6.
IPv4 Issues

IPv4 and IPv6 Coexistence

The migration techniques can be divided into three categories: Dual-stack, Tunnelling, and Translation.

Dual-stack: Allows IPv4 and IPv6 to coexist on the same network. Devices run both IPv4 and IPv6 protocol stacks simultaneously.
IPv4 Issues
IPv4 and IPv6 Coexistence (cont.)

Translation: The Network Address Translation 64 (NAT64) allows IPv6-enabled devices to communicate with IPv4-enabled devices using a translation technique similar to NAT for IPv4. An IPv6 packet is translated to an IPv4 packet, and vice versa.
IPv6 Addressing

Hexadecimal Number System

- Hexadecimal is a base sixteen system.
- Base 16 numbering system uses the numbers 0 to 9 and the letters A to F.
- Four bits (half of a byte) can be represented with a single hexadecimal value.
IPv6 Addressing

Hexadecimal Number System (cont.)

Look at the binary bit patterns that match the decimal and hexadecimal values

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>02</td>
<td>2</td>
<td>0000 0010</td>
</tr>
<tr>
<td>03</td>
<td>3</td>
<td>0000 0011</td>
</tr>
<tr>
<td>04</td>
<td>4</td>
<td>0000 0100</td>
</tr>
<tr>
<td>05</td>
<td>5</td>
<td>0000 0101</td>
</tr>
<tr>
<td>06</td>
<td>6</td>
<td>0000 0110</td>
</tr>
<tr>
<td>07</td>
<td>7</td>
<td>0000 0111</td>
</tr>
<tr>
<td>08</td>
<td>8</td>
<td>0000 1000</td>
</tr>
<tr>
<td>09</td>
<td>9</td>
<td>0000 1001</td>
</tr>
<tr>
<td>0A</td>
<td>10</td>
<td>0000 1010</td>
</tr>
<tr>
<td>0B</td>
<td>11</td>
<td>0000 1011</td>
</tr>
<tr>
<td>0C</td>
<td>12</td>
<td>0000 1100</td>
</tr>
<tr>
<td>0D</td>
<td>13</td>
<td>0000 1101</td>
</tr>
<tr>
<td>0E</td>
<td>14</td>
<td>0000 1110</td>
</tr>
<tr>
<td>0F</td>
<td>15</td>
<td>0000 1111</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>0001 0000</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>0010 0000</td>
</tr>
<tr>
<td>40</td>
<td>64</td>
<td>0100 0000</td>
</tr>
<tr>
<td>80</td>
<td>128</td>
<td>1000 0000</td>
</tr>
<tr>
<td>C0</td>
<td>192</td>
<td>1100 0000</td>
</tr>
<tr>
<td>CA</td>
<td>202</td>
<td>1100 1010</td>
</tr>
<tr>
<td>F0</td>
<td>240</td>
<td>1111 0000</td>
</tr>
<tr>
<td>FF</td>
<td>255</td>
<td>1111 1111</td>
</tr>
</tbody>
</table>
IPv6 Addressing

IPv6 Address Representation

- 128 bits in length and written as a string of hexadecimal values
- In IPv6, 4 bits represents a single hexadecimal digit, 32 hexadecimal value = IPv6 address

```
2001:0DB8:0000:1111:0000:0000:0000:0200
FE80:0000:0000:0000:0123:4567:89AB:CDEF
```

- Hextet used to refer to a segment of 16 bits or four hexadecimals
- Can be written in either lowercase or uppercase
IPv6 Addressing

IPv6 Address Representation (cont.)

```
+---+---+---+---+---+---+---+---+
| X | X | X | X | X | X | X | X |
+---+---+---+---+---+---+---+---+
+---+---+---+---+---+---+---+---+
| 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |
| to |
+---+---+---+---+---+---+---+---+
| FFFF |
+---+---+---+---+---+---+---+---+

4 hexadecimal digits = 16 binary digits
```
IPv6 Addressing

Rule 1- Omitting Leading 0s

- The first rule to help reduce the notation of IPv6 addresses is any leading 0s (zeros) in any 16-bit section or hextet can be omitted.

- 01AB can be represented as 1AB.
- 09F0 can be represented as 9F0.
- 0A00 can be represented as A00.
- 00AB can be represented as AB.

<table>
<thead>
<tr>
<th>Preferred</th>
<th>2001:0DB8:000A:1000:0000:0000:0000:0100</th>
</tr>
</thead>
<tbody>
<tr>
<td>No leading 0s</td>
<td>2001: DB8: A:1000: 0: 0: 0: 100</td>
</tr>
<tr>
<td>Compressed</td>
<td>2001:DB8:A:1000:0:0:0:100</td>
</tr>
</tbody>
</table>
IPv6 Addressing

Rule 2 - Omitting All 0 Segments

- A double colon (::) can replace any single, contiguous string of one or more 16-bit segments (hextets) consisting of all 0’s.
- Double colon (::) can only be used once within an address otherwise the address will be ambiguous.
- Known as the *compressed format*.
- Incorrect address - 2001:0DB8::ABCD::1234.
IPv6 Addressing

Rule 2 - Omitting All 0 Segments (cont.)

Example #1

<table>
<thead>
<tr>
<th>Preferred</th>
<th>2001:0DB8:0000:0000:ABCD:0000:0000:0100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omit leading 0s</td>
<td>2001:DB8:0:0:ABCD:0:0:100</td>
</tr>
<tr>
<td>Compressed</td>
<td>2001:DB8::ABCD:0:0:100</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Compressed</td>
<td>2001:DB8:0:0:ABCD::100</td>
</tr>
</tbody>
</table>

Only one :: may be used.

Example #2

<table>
<thead>
<tr>
<th>Preferred</th>
<th>FE80:0000:0000:0000:0000:0123:4567:89AB:CDEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omit leading 0s</td>
<td>FE80:0:0:0:123:4567:89AB:CDEF</td>
</tr>
<tr>
<td>Compressed</td>
<td>FE80::123:4567:89AB:CDEF</td>
</tr>
</tbody>
</table>
Types of IPv6 Addresses

IPv6 Prefix Length

- IPv6 does not use the dotted-decimal subnet mask notation
- Prefix length indicates the network portion of an IPv6 address using the following format:
 - IPv6 address/prefix length
 - Prefix length can range from 0 to 128
 - Typical prefix length is /64
Types of IPv6 Addresses

IPv6 Address Types

There are three types of IPv6 addresses:

- Unicast
- Multicast
- Anycast.

Note: IPv6 does not have broadcast addresses.
Types of IPv6 Addresses

IPv6 Unicast Addresses

Unicast

- Uniquely identifies an interface on an IPv6-enabled device.
- A packet sent to a unicast address is received by the interface that is assigned that address.
Types of IPv6 Addresses

IPv6 Unicast Addresses (cont.)

- Global Unicast
- Link-local
- Loopback ::1/128
- Unspecified Address ::/128
- Unique Local FC00::/7 – FFFF::/7
- Embedded IPv4
Types of IPv6 Addresses

IPv6 Unicast Addresses (cont.)

Global Unicast

- Similar to a public IPv4 address
- Globally unique
- Internet routable addresses
- Can be configured statically or assigned dynamically

Link-local

- Used to communicate with other devices on the same local link
- Confined to a single link; not routable beyond the link
Types of IPv6 Addresses
IPv6 Unicast Addresses (cont.)

Loopback
- Used by a host to send a packet to itself and cannot be assigned to a physical interface.
- Ping an IPv6 loopback address to test the configuration of TCP/IP on the local host.
- All-0s except for the last bit, represented as ::1/128 or just ::1.

Unspecified Address
- All-0’s address represented as ::/128 or just ::
- Cannot be assigned to an interface and is only used as a source address.
- An unspecified address is used as a source address when the device does not yet have a permanent IPv6 address or when the source of the packet is irrelevant to the destination.
Types of IPv6 Addresses
IPv6 Unicast Addresses (cont.)

Unique Local

- Similar to private addresses for IPv4.
- Used for local addressing within a site or between a limited number of sites.
- In the range of FC00::/7 to FDFF::/7.

IPv4 Embedded (not covered in this course)

- Used to help transition from IPv4 to IPv6.
Types of IPv6 Addresses

IPv6 Link-Local Unicast Addresses

- Every IPv6-enabled network interface is REQUIRED to have a link-local address
- Enables a device to communicate with other IPv6-enabled devices on the same link and only on that link (subnet)
- FE80::/10 range, first 10 bits are 1111 1110 10xx xxxx
- 1111 1110 1000 0000 (FE80) - 1111 1110 1011 1111 (FEBF)
Types of IPv6 Addresses
IPv6 Link-Local Unicast Addresses (cont.)

Packets with a source or destination link-local address cannot be routed beyond the link from where the packet originated.
IPv6 Unicast Addresses

Structure of an IPv6 Global Unicast Address

- IPv6 global unicast addresses are globally unique and routable on the IPv6 Internet
- Equivalent to public IPv4 addresses
- ICANN allocates IPv6 address blocks to the five RIRs
Currently, only global unicast addresses with the first three bits of 001 or 2000::/3 are being assigned.
IPv6 Unicast Addresses
Structure of an IPv6 Global Unicast Address (cont.)

A global unicast address has three parts: Global Routing Prefix, Subnet ID, and Interface ID.

- **Global Routing Prefix** is the prefix or network portion of the address assigned by the provider, such as an ISP, to a customer or site, currently, RIR’s assign a /48 global routing prefix to customers.

- 2001:0DB8:ACAD::/48 has a prefix that indicates that the first 48 bits (2001:0DB8:ACAD) is the prefix or network portion.

![IPv6 /48 Global Routing Prefix diagram](image)
IPv6 Unicast Addresses
Structure of an IPv6 Global Unicast Address (cont.)

- **Subnet ID** is used by an organization to identify subnets within its site
- **Interface ID**
 - Equivalent to the host portion of an IPv4 address.
 - Used because a single host may have multiple interfaces, each having one or more IPv6 addresses.

[Diagram of IPv6 Address Structure]
IPv6 Unicast Addresses

Static Configuration of a Global Unicast Address

```
R1(config)#interface gigabitethernet 0/0
R1(config-if)#ipv6 address 2001:db8:acad:1::1/64
R1(config-if)#no shutdown
R1(config-if)#exit
R1(config)#interface gigabitethernet 0/1
R1(config-if)#ipv6 address 2001:db8:acad:2::1/64
R1(config-if)#no shutdown
R1(config-if)#exit
R1(config)#interface serial 0/0/0
R1(config-if)#ipv6 address 2001:db8:acad:3::1/64
R1(config-if)#clock rate 56000
R1(config-if)#no shutdown
```
IPv6 Unicast Addresses
Static Configuration of an IPv6 Global Unicast Address (cont.)

Windows IPv6 Setup
IPv6 Unicast Addresses
Dynamic Configuration of a Global Unicast Address using SLAAC

Stateless Address Autoconfiguration (SLAAC)
- A method that allows a device to obtain its prefix, prefix length and default gateway from an IPv6 router
- No DHCPv6 server needed
- Rely on ICMPv6 Router Advertisement (RA) messages

IPv6 routers
- Forwards IPv6 packets between networks
- Can be configured with static routes or a dynamic IPv6 routing protocol
- Sends ICMPv6 RA messages
IPv6 Unicast Addresses
Dynamic Configuration of a Global Unicast Address using SLAAC (cont.)

- The IPv6 `unicast-routing` command enables IPv6 routing.
- RA message can contain one of the following three options:
 - SLAAC Only – Uses the information contained in the RA message.
 - SLAAC and DHCPv6 – Uses the information contained in the RA message and get other information from the DHCPv6 server, stateless DHCPv6 (for example, DNS).
 - DHCPv6 only – The device should not use the information in the RA, stateful DHCPv6.
- Routers send ICMPv6 RA messages using the link-local address as the source IPv6 address.
IPv6 Unicast Addresses
Dynamic Configuration of a Global Unicast Address using SLAAC (cont.)

Router Solicitation and Router Advertisement Messages

1. Router Solicitation – To all IPv6 routers
 "I need addressing information from the router."

2. Router Advertisement – To all IPv6 nodes
 Option 1 (SLAAC Only) – "Here is your Prefix, Prefix-length, Default Gateway information."
 Option 2 (SLAAC and DHCPv6) – "Here is my information but you need to get other information such as DNS addresses from a DHCPv6 server."
 Option 3 (DHCPv6 Only) – "I can’t help you. Ask a DHCPv6 server for all your information."
IPv6 Unicast Addresses
Dynamic Configuration of a Global Unicast Address using DHCPv6 (cont.)

Dynamic Host Configuration Protocol for IPv6 (DHCPv6)

- Similar to IPv4

- Automatically receives addressing information, including a global unicast address, prefix length, default gateway address and the addresses of DNS servers using the services of a DHCPv6 server.

- Device may receive all or some of its IPv6 addressing information from a DHCPv6 server depending upon whether option 2 (SLAAC and DHCPv6) or option 3 (DHCPv6 only) is specified in the ICMPv6 RA message.

- Host may choose to ignore whatever is in the router’s RA message and obtain its IPv6 address and other information directly from a DHCPv6 server.
IPv6 Unicast Addresses
Dynamic Configuration of a Global Unicast Address using DHCPv6 (cont.)

Router Solicitation and Router Advertisement Messages

1. Router Solicitation – To all IPv6 routers
 "I need addressing information from the router."

2. Router Advertisement – To all IPv6 nodes
 Option 2 (SLAAC and DHCPv6) –
 "Here is your Prefix, Prefix-length, Default Gateway information, but
 you will need to get DNS information from a DHCPv6 server."

3. DHCPv6 Solicit – To all DHCPv6 servers
 Option 2 (SLAAC and DHCPv6) –
 "I need addressing information from the DHCPv6 server."

Note: An RA with option 3 (DHCPv6 Only) enabled will require the client to obtain all
information from the DHCPv6 Server.
IPv6 Unicast Addresses

EUI-64 Process or Randomly Generated

EUI-64 Process

- Uses a client’s 48-bit Ethernet MAC address and inserts another 16 bits in the middle of the 46-bit MAC address to create a 64-bit Interface ID.

- Advantage is that the Ethernet MAC address can be used to determine the interface; is easily tracked.

EUI-64 Interface ID is represented in binary and comprises three parts:

- 24-bit OUI from the client MAC address, but the 7th bit (the Universally/Locally bit) is reversed (0 becomes a 1).

- Inserted as a 16-bit value FFFE.

- 24-bit device identifier from the client MAC address.
IPv6 Unicast Addresses
EUI-64 Process or Randomly Generated (cont.)
IPv6 Unicast Addresses

EUI-64 Process or Randomly Generated (cont.)

```
R1# show interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
    Hardware is CN Gigabit Ethernet, address is fc99.4775.c3e0
    (bia fc99.4775.c3e0)
</Output Omitted>

R1# show ipv6 interface brief
GigabitEthernet0/0       [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:1:1
GigabitEthernet0/1       [up/up]
    FE80::FE99:47FF:FE75:C3E1
    2001:DB8:ACAD:2:1
Serial0/0/0               [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:3:1
Serial0/0/1               [administratively down/down]
    unassigned
R1#
```

Link-local addresses using EUI-64
IPv6 Unicast Addresses
EUI-64 Process or Randomly Generated (cont.)

Randomly Generated Interface IDs

- Depending upon the operating system, a device can use a randomly generated Interface ID instead of using the MAC address and the EUI-64 process.

- Beginning with Windows Vista, Windows uses a randomly generated Interface ID instead of one created with EUI-64.

- Windows XP (and previous Windows operating systems) used EUI-64.
IPv6 Unicast Addresses
Dynamic Link-local Addresses

Link-Local Address

- After a global unicast address is assigned to an interface, an IPv6-enabled device automatically generates its link-local address.

- Must have a link-local address that enables a device to communicate with other IPv6-enabled devices on the same subnet.

- Uses the link-local address of the local router for its default gateway IPv6 address.

- Routers exchange dynamic routing protocol messages using link-local addresses.

- Routers’ routing tables use the link-local address to identify the next-hop router when forwarding IPv6 packets.
IPv6 Unicast Addresses

Dynamic Link-local Addresses (cont.)

Dynamically Assigned

The link-local address is dynamically created using the FE80::/10 prefix and the Interface ID.
IPv6 Unicast Addresses

Static Link-local Addresses

Configuring Link-local

```
R1(config)#interface gigabitethernet 0/0
R1(config-if)#ipv6 address fe80::1 link-local
    link-local Use link-local address
R1(config-if)#ipv6 address fe80::1 link-local
R1(config-if)#exit
R1(config)#interface gigabitethernet 0/1
R1(config-if)#ipv6 address fe80::1 link-local
R1(config-if)#exit
R1(config)#interface serial 0/0/0
R1(config-if)#ipv6 address fe80::1 link-local
R1(config-if)#
```
IPv6 Unicast Addresses

Static Link-local Addresses (cont.)

Configuring Link-local

```
R1# show ipv6 interface brief
GigabitEthernet0/0       [up/up]
  FE80::1
  2001:DB8:ACAD:1::1
GigabitEthernet0/1       [up/up]
  FE80::1
  2001:DB8:ACAD:2::1
Serial0/0/0               [up/up]
  FE80::1
  2001:DB8:ACAD:3::1
Serial0/0/1               [administratively down/down]
  unassigned
R1#
```
IPv6 Global Unicast Addresses

Verifying IPv6 Address Configuration

Each interface has two IPv6 addresses -

1. global unicast address that was configured
2. one that begins with FE80 is automatically added as a link-local unicast address
IPv6 Global Unicast Addresses

Verifying IPv6 Address Configuration (cont.)

R1# show ipv6 route
IPv6 Routing Table - default - 7 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user
Static

<output omitted>

C 2001:DB8:ACAD:1::/64 [0/0]
 via GigabitEthernet0/0, directly connected
L 2001:DB8:ACAD:1::1/128 [0/0]
 via GigabitEthernet0/0, receive
C 2001:DB8:ACAD:2::/64 [0/0]
 via GigabitEthernet0/1, directly connected
L 2001:DB8:ACAD:2::1/128 [0/0]
 via GigabitEthernet0/1, receive
C 2001:DB8:ACAD:3::/64 [0/0]
 via Serial0/0/0, directly connected
L 2001:DB8:ACAD:3::1/128 [0/0]
 via Serial0/0/0, receive
L FF00::/8 [0/0]
 via Null0, receive
R1#
IPv6 Multicast Addresses

Assigned IPv6 Multicast Addresses

- IPv6 multicast addresses have the prefix FF00::/8
- There are two types of IPv6 multicast addresses:
 - Assigned multicast
 - Solicited node multicast
IPv6 Multicast Addresses

Assigned IPv6 Multicast Addresses (cont.)

Two common IPv6 assigned multicast groups include:

- **FF02::1 All-nodes multicast group** –
 - All IPv6-enabled devices join
 - Same effect as an IPv4 broadcast address

- **FF02::2 All-routers multicast group**
 - All IPv6 routers join
 - A router becomes a member of this group when it is enabled as an IPv6 router with the `ipv6 unicast-routing` global configuration mode command.
 - A packet sent to this group is received and processed by all IPv6 routers on the link or network.
IPv6 Multicast Addresses

Assigned IPv6 Multicast Addresses (cont.)
IPv6 Multicast Addresses

Solicited Node IPv6 Multicast Addresses

- Similar to the all-nodes multicast address, matches only the last 24 bits of the IPv6 global unicast address of a device
- Automatically created when the global unicast or link-local unicast addresses are assigned
- Created by combining a special FF02::0:0:0:0:0:FF00::/104 prefix with the right-most 24 bits of its unicast address
IPv6 Multicast Addresses

Solicited Node IPv6 Multicast Addresses (cont.)

The solicited node multicast address consists of two parts:

- **FF02::0:0:0:0:FF00::/104 multicast prefix** – First 104 bits of the all solicited node multicast address
- **Least significant 24-bits** – Copied from the right-most 24 bits of the global unicast or link-local unicast address of the device
8.3 Connectivity Verification
ICMP

ICMPv4 and ICMPv6 Messages

- ICMP messages common to both ICMPv4 and ICMPv6 include:
 - Host confirmation
 - Destination or Service Unreachable
 - Time exceeded
 - Route redirection

- Although IP is not a reliable protocol, the TCP/IP suite does provide for messages to be sent in the event of certain errors, sent using the services of ICMP.
ICMP

ICMPv6 Router Solicitation and Router Advertisement Messages

- ICMPv6 includes four new protocols as part of the Neighbor Discovery Protocol (ND or NDP):
 - Router Solicitation message
 - Router Advertisement message
 - Neighbor Solicitation message
 - Neighbor Advertisement message

- **Router Solicitation and Router Advertisement Message** – Sent between hosts and routers.

- **Router Solicitation (RS) message** – RS messages are sent as an IPv6 all-routers multicast message.

- **Router Advertisement (RA) message** – RA messages are sent by routers to provide addressing information.
ICMP

ICMPv6 Router Solicitation and Router Advertisement Messages (cont.)

1. **Router Solicitation**
 "I need addressing information from the router"

2. **Router Advertisement**
 "I'm everything you need (Prefix, Prefix-length, Default Gateway)"
 Or
 "Here is my information but you need to get other information such as DNS addresses from a DHCPv6 server."
 Or
 "I can't help you. Ask a DHCPv6 server for all your information."

DHCPv6 Server
ICMP

ICMPv6 Neighbor Solicitation and Neighbor Advertisement Messages

- Two additional message types:
 - Neighbor Solicitation (NS)
 - Neighbor Advertisement (NA) messages

- **Used for address resolution** is used when a device on the LAN knows the IPv6 unicast address of a destination, but does not know its Ethernet MAC address.

- **Also used for Duplicate Address Detection (DAD)**

 - Performed on the address to ensure that it is unique.

 - The device sends an NS message with its own IPv6 address as the targeted IPv6 address.
ICMP

ICMPv6 Neighbor Solicitation and Neighbor Advertisement Messages (cont.)

ICMPv6 Neighbor Discovery Protocol

Address Resolution
To: FF02::FF00::20

I need the Ethernet MAC address of the device that has this unicast address.
Target IPv6 Address: 2001:DB8:ACAD:1::20

Duplicate Address Detection (DAD)
To: FF02::FF00::30

Before I use this address is anyone else on this link using this global unicast address?
Target IPv6 Address: 2001:DB8:ACAD:1::30
Testing and Verification

Ping – Testing the Local Stack

Pinging the local host confirms that TCP/IP is installed and working on the local host.

Pinging 127.0.0.1 causes a device to ping itself.
Testing and Verification

Ping – Testing Connectivity to the Local LAN
Testing and Verification

Ping – Testing Connectivity to Remote

Diagram showing the process of testing connectivity using Ping to a remote host.
Testing and Verification

Traceroute – Testing the Path

Traceroute

- Generates a list of hops that were successfully reached along the path.
- Provides important verification and troubleshooting information.
- If the data reaches the destination, then the trace lists the interface of every router in the path between the hosts.
- If the data fails at some hop along the way, the address of the last router that responded to the trace can provide an indication of where the problem or security restrictions are found.
- Provides round-trip time for each hop along the path and indicates if a hop fails to respond.
IP Addressing

Summary

- IP addresses are hierarchical with network, subnetwork, and host portions.
- An IP address can represent a complete network, a specific host, or the broadcast address of the network.
- The subnet mask or prefix is used to determine the network portion of an IP address. Once implemented, an IP network needs to be tested to verify its connectivity and operational performance.
- DHCP enables the automatic assignment of addressing information such as IP address, subnet mask, default gateway, and other configuration information.
IP Addressing

Summary (cont.)

- IPv4 hosts can communicate one of three different ways: unicast, broadcast, and multicast.
- The private IPv4 address blocks are: 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16.
- The depletion of IPv4 address space is the motivating factor for moving to IPv6.
- Each IPv6 address has 128 bits verses the 32 bits in an IPv4 address.
- The prefix length is used to indicate the network portion of an IPv6 address using the following format: IPv6 address/prefix length.
IP Addressing

Summary (cont.)

- There are three types of IPv6 addresses: unicast, multicast, and anycast.
- An IPv6 link-local address enables a device to communicate with other IPv6-enabled devices on the same link and only on that link (subnet).
- Packets with a source or destination link-local address cannot be routed beyond the link from where the packet originated.
- IPv6 link-local addresses are in the FE80::/10 range.
- ICMP is available for both IPv4 and IPv6.